On zero-dimensionality and fragmented rings
نویسندگان
چکیده
منابع مشابه
On zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملOn quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کاملZero Square Rings
A ring R for which x = 0 for all x e R is called a zerosquare ring. Zero-square rings are easily seen to be locally nilpotent. This leads to two problems: (1) constructing finitely generated zero-square rings with large index of nilpotence, and (2) investigating the structure of finitely generated zerosquare rings with given index of nilpotence. For the first problem we construct a class of zer...
متن کاملon zero-divisor graphs of quotient rings and complemented zero-divisor graphs
for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...
متن کاملSubrings of zero-dimensional rings
When Sarah Glaz, Bill Heinzer and the junior author of this article approached Robert with the idea of editing a book dedicated to his work, we asked him to give us a list of his work and to comment on it to the extent he felt comfortable. As usual, he was extremely thorough in his response. When the authors of this article began to consider what topic we wanted to write about, we were impresse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1999
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700033402